
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 6, June (2016)

ISSN: 2395-5317 ©EverScience Publications 33

Threats Indentification in Web Application

Dr Gayatri Devi

Professor, Department of Computer Science and Engineering, ABIT,Sec-1,CDA, Cuttack, Odisha, India.

Rajeeb Sankar Bal

Senior Lecturer, Department of Computer Science and Engineering, ABIT,Sec-1,CDA, Cuttack, Odisha, India.

Pragyan priyadarsini Sahoo

Student, M.Tech(CSE), Department of Computer Science and Engineering, ABIT,Sec-1,CDA,Cuttack,Odisha, India.

Abstract –. Now a day’s man wants to live in an intelligent and

smart environment, an environment that would make life more

easy and comfortable, enhancing the quality of his living, with

various intelligent automation devices and services. The Hazards

is applied not only applied to web applications but also to

embedded systems, cloud applications, wireless sensor networks,

network tools etc for Hazards evaluation and risk analysis along

with mitigation suggestions to them. Hazards for a application

takes a lot of brainstorming sessions to collect all information of

the assets, trust boundaries and Hazards pro les possible on the

assets. The approach of Microsoft is followed by most of the

application developing companies and is the most acceptable

one. Along with Hazards evaluation, it takes care of business

aspects of software in a stipulated time period. This is a software

centric approach. Currently software centric approach

dominates over the other two. However it is beneficial to use the

combined approach. Whenever it comes to industries, a hybrid

approach with a report generation capability is hoped to get

preferred.

Index Terms –Operating System (OS), Software Development

Life Cycle (SDLC), Software System (SS), Data Flow Diagrams

(DFD), Final Security Review (FSR), Supply chain management

(SCM).

1. INTRODUCTION

In today's hostile and competitive Internet era, a web

application is very much likely to be assessed thoroughly

from all possible ways for its inherent vulnerabilities that can

be exploited by an attacker. As the proverb goes "thieves are

more intelligent than cops", even a least sign of weakness can

be converted to a big disappointment for the software system

by the high intellectuality of the attacker. As a consequence,

the data gets revealed that has to be kept secret, the system

gets compromised, unable to serve or crashed, reputations and

trust of organization at stake and many more miserable

consequences. So vulnerabilities have to be minimized.

Software API, data store, data transfer channel etc. are the

most important lines of defense for protecting critical

information assets in utility applications like e-commerce, e-

banking, e-forecasting systems where there is a large amount

of confidential data processing involved. Vulnerabilities in a

software application is beyond the capabilities of the OS or

Network level security mechanisms or intrusion detection

techniques. Reliance on network security alone or installation

of firewall is not sufficient as it does not address the logic

errors, flaws in architecture of SS, flaws in operating system

and its resource limitations or the design level problems. As it

started, on 2nd Nov 1988, an Internet worm in the UNIX

operating system was created by a 22 year old student named

Robert Morris which was capable of exploiting vulnerabilities

by using buffer overflow attacks. In those days, installation of

firewall with a proper application proxy was considered to be

sufficient for security. But this worm contradicted this fact

and posed a challenge for the security designers. From that

day till today there have been inventions of a lot of attacks

that are gradually becoming more sophisticated requiring less

intruder knowledge. So on the basis of the last two or three

decade's security trend, innovative Threats evaluation

techniques for computer systems and software systems are

required. From the business point of view, the security

objectives should address the areas like identity management,

business continuation, and corporate reputation along with

legal and regulatory perspectives properly. Risk management

is a major goal in business applications, i.e. security resources

are applied to vulnerabilities that pose great risk to the

business. In the year 1968, there was a conference organized

by NATO science committee on software engineering where

the main discussion was on software crisis and how they can

be addressed by software engineering principles. This goal

gradually gave birth the ne-tuned field of software

engineering in which the formal step by step practices are

being used today were evolved (broadly the steps are:

requirement analysis, software design, implementation,

software testing, software deployment and maintenance).

Now-a-days the growth of internet and telecommunication

has given rise to the new type of crisis: software security

crisis, which is the result of casual security considerations and

negotiations over it. To address such a crisis, secure software

engineering is needed and the process of Security

development life cycle to be considered along side of SDLC.

In a SDLC, for a long time, security has been considered as a

non-functional requirement. Functional requirement is defined

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 6, June (2016)

ISSN: 2395-5317 ©EverScience Publications 34

as the system of requirements which depicts the functions that

the SS is desired to do. So this type of requirement defines the

behavior of the software system. On the other hand, non-

functional requirement is the system of requirements which

includes all other aspects than the functional ones like

assessment of cost, platform compatibility, monetary and

decisions etc. So adding security requirements to the non-

functional class is ne as security requirements do not come

under what a SS is required to Rather, security requirements

de ne the behavior that the system should have when

Introduction an undefined or unknown function or situation

arises. Being taken as a non-functional requirement, security

had been taken as an after-thought or of lesser priority. It was

not compulsory to make softwares security aware. But today

the scenario has been changed. Now large amount of user data

reside in the application database and in process memory

during execution of the operation. Hence a secure measure

over every operation is essential. Hence security measures can

be taken as 'inherent' in the requirement given by the

customer. Now-a-days security cannot be treated as a after-

thought as a little bit security aw leaves room for big

exploitation that can be performed by the attacker. Security

requirements and functional requirements have to go side by

side. Security implementations and functional requirement

implementations have to be done side by side and

interdependently. Hence it is not at all arguable if the security

requirements are considered as functional requirements. In

fact there are several benefits if security is considered as

functional requirement and it's considered in the SDLC

starting with the requirement analysis phase. Firstly, focus on

security aspects and a more detailed view along with its cause

and effects on the performance and functionality can be

analyzed and obtained which helps the designer find out the

counter measure against each threats right from the earlier

stage of SDLC. Hence the security testing cost in turn gets

reduced. These two advantages make the software become

secured right from its inception and on successful completion

a secure system comes out which is secured against too many

types of attacks. When talked about security in a software or

web application as it has been talked about in the previous

paragraphs, it essentially means the existence of three aspects:

confidentiality, integrity and availability. In a broad sense,

confidentiality is the process of preventing unauthorized

disclosure, integrity is the process of pre-venting unauthorized

changes and availability is the prevention of unauthorized

access. Information security means to protect information

from unauthorized access, disclosure or change. Information

security includes another aspect in case of a software system:

availability and recovery of the responsibility of information

keeping the information system or software system running ne

while the system performs its designated functionalities and

protecting the resources from any unnecessary and unintended

situations. Security in a web application can be incorporated

at the design phase or after deployment i.e. the maintenance

phase. Incorporation in the design phase is the extensive

practice of understanding the system assets that are to be

protected, deployment environment, data flows and control

flows, types and number of users to access the system once

deployed, available resources that are going to be utilized

during the operations of the software, all possible cases of

misuse that can happen over each resources or processes and

many more. The system designer produces the design

document keeping all these aspects in mind and the next

phase i.e. implementation phase starts In contrast, during the

testing phase, there is a security testing conducted to test for

all possible kinds of Threats. The success of this testing

depends on the robustness of the design phase security in-

corporation. Hence at the design phase the security aspects are

best added which is implemented in the implementation

phase. Next comes the cost e effectiveness consideration

which has also to be done in the design phase in which the

only Necessary security implementation in the software is

done leaving the not-much-needed parts that may

unnecessarily consume cost and time. Threats is the process

of design level security consideration (consideration includes

identification, prioritization and mitigation) and to cost

effectively do it, risk-based Threats is considered. Before the

introduction of Threats, the exact meaning of Threats,

vulnerabilities, exploitations, attacks and difference between

them should be understood [1].

1.1. Basic terminologies

Threats: A Threat is something danger that may disrupt the

operation, working procedure, integrity, or availability of a

software or a network. This can take any form and can be

malevolent, accidental, or simply an act of nature. In other

words, Threat is a possible danger that might exploit a

vulnerability to breach security and thus cause possible harm.

Vulnerability: It can be defined as an inherent weakness in the

design, configuration, implementation, or management of a

network or system that renders it susceptible to Threats.

Vulnerabilities are what make networks susceptible to

information loss and downtime. Every network and system

has some kind of vulnerability.

Exploitation: An exploit is the way or tool by which an

attacker uses a vulnerability to cause damage to the target

system. The exploit could be a package of code which creates

packets that over flow a buffer in software running on the

target, which is also known as buffer over flows.

Alternatively, the exploit could be a social engineering

scheme whereby the bad guy talks a user, preferably an

employee into revealing sensitive information, such as a

password, over the phone.

Attack: An attack is any attempt to destroy, expose, alter,

disable, steal or gain unauthorized access to or make

unauthorized use of an asset [1].

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 6, June (2016)

ISSN: 2395-5317 ©EverScience Publications 35

1.2. Threat

A Threat is a procedure for optimizing network security by

identifying objectives and vulnerabilities, and then defining

countermeasures to prevent or mitigate the effects of threat to

the system. It has emerged as an independent and

comprehensive methodology. Many researchers have been

taken place for the advancement of this area. A threat assures

security to a higher level of abstraction. By understanding the

threat scenarios of the system and the appropriate mitigation

plans available, it helps to find out exact vulnerabilities to

particular assets, serves to produce secure design. Hence

again it can be defined as a structured and formal approach of

presenting, assessing and documenting security risks of a

particular software. Threats cannot explicitly be considered as

mathematical science and hence with the freedom and

exibility even a non-security expert can exercise it with a

provided convenient framework and support (though not with

full e efficiency). As discussed before, it’s better to add

security suggestions right in or before the design phase of the

SDLC. The same is followed by threat mechanism. It is

documented by the designer with proper knowledge of system

requirements, deployment environment, system environments,

security requirements and the resources available for the

system. Taking all into consideration, the model is

documented. Microsoft states, Starting the process of threat

early in the SDLC is important since it haves the capability to

reveal the weakness in architecture that may require

significant modifications to the product [1].

1.3. Different approaches of Threat

 Asset-Centric: Asset-centric Threats involves starts with

dentifying critical assets. As-sets are the interfaces that are

entrusted to a system, such as a collection of sensitive

personal information. It involves assessing the risks

associated with them, approximating them and ranking the

risks.

 Attacker-Centric: Attacker-centric threat starts with the

attacker objectives, motivation and capabilities. Objective

means this evaluates their goals, and how they might

achieve them. Attacker's motivations are often considered

and given importance than any other factor. Capabilities

are the level of harm that can be done and the entry points

where it can be done and hence involves identifying

points, evaluating attack path, evaluating damage potential

and risk rating.

 Software-Centric: Software-centric threat, also termed as

'design-centric,’ system-centric', or 'architecture-centric',

starts with the design of the system. It involves application

decomposition and pro ling, identifying threat for

scenarios and mitigation strategies. It attempts to step

through the model of a system, looking for types of attacks

against each element of the model. The design-centric

threat may start with DFD or Unified Modeling Language

(UML) diagram. In other words, this type of modeling

may use data flow scenarios or control flow scenarios as

its input on which threat are to be assessed. All the three

approaches have their own significances. Each approach is

taken at particular time according to the requirements of

the system. We can use hybrid approach also for better

results [2].

2. SECURITY DEVELOPMENT LIFE CYCLE

It can be defined as a software development process schedule

which makes us build more secure software and can address

to the security compliance requirements with the achievement

of development cost reduction. Software-centric Threats, that

has been discussed previously, is synonymous to security

development life cycle. The proper security development life

cycle was described by Lipner and Steve in the paper in which

the detailed process of Microsoft SDL has been explained.

Microsoft has developed its own security development life

cycle which is described in the paper by Lipner and

Stevewith. The aim of reducing software maintenance costs

and increased reliability of software concerning software

security related bugs etc are circumscribed into the Security

development life cycle. Microsoft also describes its own

approach. The IT industries are not uniform. So individual

companies use their own interest of SDLC according to the

suitability of human talent, organizational size, security

requirements, resources available (time, talent, and budgets)

and many other. Success or failure of an application often

relies on these dependent factors. The effect of these

intangibles can be controlled by going through the basic

blocks of good security development practices and

understanding the implementation priorities based on the

experience and maturity level of the development team.

Though many researches are continuously and rigorously

performed in order to achieve significant amendments, the

approach of Microsoft and its updates are more or less widely

accepted by many IT companies for secure design purpose.

2.1. Microsoft SDL Optimization model

The Microsoft SDLC is based on three core concepts:

education, continuous process improvement, and

accountability. The investments on continuous education,

huge practical dataset collection and training for job roles

within a software development helps organizations to face

adequately to the changes in technology and the dynamic

nature of Threats. The SDL gives heavy importance on under-

standing the cause and effect of security vulnerabilities in

applications and begs regular assessments and amendments

towards betterments of SDL process keeping in view the non-

static nature of Threats, the modernization of technologies and

advancements in threat technologies. The collected Data is

utilized to evaluate e effectiveness of training, in-process

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 6, June (2016)

ISSN: 2395-5317 ©EverScience Publications 36

metrics are being used to evaluate process compliance and

post-release metrics assist in future changes.

The SDLC is represented in the sequence same as the phases

of the traditional SDLC. But here the additional activities

performed in order to add some degree of security benefits

over the conventional one. The SDL Optimization Model is

divided into five phases roughly:

• Training, policy, and organizational capabilities

• Requirements and design

• Implementation

• Verification

• Release and response

The first stage may be excluded from the stage schedule if it

is considered to be a onetime activity. It happens when the

same type of software is being developed again and again

with no need of extra knowledge and training. In that case it

can be treated as a pre-SDL activity. Additionally, the SDL

Optimization Model defines four levels of maturity for the

capabilities and practices in these above mentioned phases.

They are: Basic, Standardized, Advanced and Dynamic. The

Microsoft SDL Optimization Model starts with the 'Basic'

level of maturity where there is little or no process, training,

and tooling in place, and goes step by step towards the

Dynamic level, which depicts the complete SDL compliance

across a complete application. A sophisticated security

application is generally built in (or expected to be built in)

advanced or dynamic level of maturity. Again, Focus has to

be drawn on the accuracy of the outcome after each stage.

Each stage descriptions along with the guidelines for a proper

execution of the schedule is shown in figure.

Figure 1. SDL Optimization Model with capability and

maturity levels.

2.2. Training, policy, and organizational capabilities

All the resources of a development team should get well

informed and trained according to the specific security

requirements of the software, the security basics, and the

ongoing trends in security and management of privacy. This

training can be continued on a scheduled manner in a year in

which the technical persons (design persons, developers,

testers etc.) are mandatory to attend. The training areas

include

 Face area, basic understanding of defense, least privilege

adherence, the security adopted by default etc.

 Threats: It includes topics like threats overview, designing

of

 A threats model, implementation constraints sticking to the

threats model etc.

 Secure coding: It includes understanding of buffer over

flow(in

 C, C++), arithmetic errors(in C, C++), XSS, SQL

Injection, weak cryptography etc

 Security testing: it includes understanding of the

difference

 between functional testing and security testing, risk

assessment, methods of security testing etc

 Privacy: it is concerned with topics like privacy sensitive

 Data types, best practices of privacy design, assessment of

risk, best practices of privacy development, best practices

of privacy testing etc.

 Miscellaneous: topics like advance security architecture

and

 Design, depend-able UI design, detailed studies of security

flaws and vulnerabilities, implementation of manual threat

mitigation etc.

2.3. Requirements and design

 Security requirement

 For a secure SS development, security and privacy need to

be considered side by side. So the most crucial time to

include trustworthiness to the application is the design

phase. The early functional requirement by the customer

lets the organization identify important milestones,

deliverables and permissions along with the privacy and

security aspects of the system (that might be explicit or

implicit to the system).

 Quality Gates/Bug Bars

 There is a use of quality gates and bug bars for the

establishment of minimum acceptable level of security and

the extend of privacy. These are certain threshold values of

risks and severity respectively defined by the proper

understanding of associated risks. Bug bar is set once only

and cannot be changed any more. A development team

negotiates the quality gates for each development phase.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 6, June (2016)

ISSN: 2395-5317 ©EverScience Publications 37

Team should get them approved by the security personnel

who might manipulate project specific clarifications and

more appropriate security requirements. With all the

clarifications and improvements; FSR is completed.

 Security and Privacy Risk Assessment

 Security and privacy risk assessments (SRA and PRA) are

processes that identify the functional faces of the

application demanding deep review. The information in

such assessments are like find out the modules of the

project that need Threats models beforehand of release,

modules of project demanding security design re-views

before release, portions of the product that need

penetration testing by a mutually agreed upon team

external to the developing team, if any other testing or

analysis required from the security point of view, the

specific scopes of fuzz testing requirements, the privacy

impact ratings(whether high privacy risks , moderate

privacy risks or low privacy risks) etc.

 Design requirements

 The development team should understand the difference

between secure features and security features. Secure

features are the features whose functionalities are well

engineered in accordance to security, including extensive

validation or cryptographic implementations of the data.

Security features can be defined as the program

functionality with security implementations (i.e. firewall,

IPSec, kerberos or SSl etc). So there is a chance that

implementation of security features is added but still the

system is left as insecure. The difference has to be well

understood. If the security feature is the cause, the secure

feature is the effect. The security design requirement

includes the required actions that may include the security

and privacy design specifications, specification review

and/or the minimum requirement of cryptographic

specifications. A good design specification describes the

complete and accurate secure implementation of all

functionality provided by a given feature or functions or in

other words secures deployment information in a function.

 Attack surface reduction

 It means giving the attacker the minimum scope to attack

on the system there by reducing the attack surface and

vulnerability. It includes the roles of least privileges and

limited access to users, implementation of layer defense

etc to hide the exploitable spot from the attacker.

 Threats

 This is what the whole thesis is about. It allows

development teams to analyze, document and mitigation

suggestion of the potential threat in design level models on

an abstraction of risks associated. The documentation as

the output is adhered to throughout the rest of the phases

for a secure product development.

2.4. Implementation

 Use of approved and updated tools

 The developing organization should publish the approved

tools along with their associated security checks, such as

compiler/linker options and warnings, endorsed by the

security adviser. The development teams should use the

latest version of the developing tools to which out dates

the previous security flaws and errors.

 Don’t use Unsafe Functions

 The existing functions, commonly used functions are

always under scan in the attacker's eye for some

vulnerability. So the APIs, common functions should be

analyzed properly in the current threat environment by the

security advisors before using them. All the prohibited or

black-listed functions should be avoided from use by the

developing team.

 Static analysis

 The source code should be put to Static analysis as it

provides the scalable capability for performing security

code review and also helps to confirm whether the secure

coding policies are being followed or not.

2.5. Verification

 Dynamic program analysis

 It is the verification of the system at run time. It is required

to confirm whether the program works as the design

document demands. This task includes verifications of

user privilege issues, memory corruption, and other critical

security problems. Generally tools are used for the

verification purposes for accuracy and automation.

 Threats Model and Attack Surface Review

 This review tracks any design or implementation changes

to the system other than the design specifications and any

new attack vectors being introduced because of the

changes. These attacks are mitigated after detailed

verification.

2.6. Release

 Incident Response Plan

 In worst, it might be the case that programs with absolutely

no known vulner-abilities at the time of release may also

be subject to new Threats that may be discovered in future.

For staying safe against such situations in future, an

incident response plan is prepared. This includes an

identified sustained engineering (SE) team to work in a

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 6, June (2016)

ISSN: 2395-5317 ©EverScience Publications 38

security need after release which should be available 24*7

even on phone calls.

 FSR

 Prior to release, it is the detailed assessment of all the

security activities performed in an application system by

the security advisor with the assistance from the technical

development personnel’s and the security and privacy

team personnel’s. The FSR generally includes an

assessment of the Threats models, tool output, input and

output validations, exception requests, performance issues

against the previously standardized quality gates. A FSR

may be considered to be passed if the issues are mitigated

properly. Passed FSR with exceptions if all the security

and privacy issues identified by it are mitigated or all

exceptions are satisfactorily resolved and FSR with

escalation if the product does not reach to an acceptable

compromise in terms of security. Besides these 5 stages,

there are some other security tasks that are carried out

which may be

 Manual code review

 Performed by highly experienced and skilled security

persons focused around the critical assets that are utmost

susceptible to vulnerabilities.

 Penetration testing

 It's a white box security analysis of an application system

performed by the experienced security professionals which

simulates the action of an attacker. Its objective is to

discover the potential vulnerabilities present in the system

because of failure in secure coding, fault in deployment

environment etc. It is a very useful technique.

 Vulnerability Analysis of Similar Applications

 The vulnerabilities found in similar software can also be

present in the current application which may be left

untouched by all the previous activities. Many information

is searched over Internet and the vulnerabilities are tried to

be uncovered with maximum effort [2].

Figure 2 The Microsoft Security Development Lifecycle-

Simplified

3. RELATED WORK

Threat is a structured process of identifying and documenting

the vulnerabilities to threat with a proper risk analysis

associated with a system. It also can be treated as a security

review in design review technique. As a matter of fact, the

designers and the technical persons should understand the

difference between secure and insecure system. A system

generally does what it should do, but a secure system focuses

on the fact that the system does not do what it should not do.

Threat is a too complicated task if the application is

considered as a whole, rather it gets simplified when it is done

for specific components of the system and at last they are

combined as a whole. So for doing this, the application need

to be decomposed to small modules, all the dependencies are

found out and the interfaces which can also be called as entry

points are found out for the users and databases. Then the

threat process continues.

3.1. The process of Threat

The process of threat starts from defining the trust levels to

each entry point. Trust level defines the level of the entry

point up to which it may be dependable for interaction of data.

There are mainly three types of trust levels though more may

be obtained for complex applications namely administrator,

user and un-trusted. The administrator trust level is concerned

with the admin module which carries full access to the system

there by taken to be the most trusted one. The user trust level

defines the interface with the user to the system which may

subject to different types of attacks since the user is not

always dependable, showing moderate level of trust.

The un-trusted one, as the name suggests, is the most

exploitable one to threat and mostly it is open to anonymous

users to operate on. It demands careful security concern and

resource managements.

The detailed process of threat has been described in the

following section is proposed first by Microsoft, which has

been getting followed by many information technology

organizations. This has been most successful approach to be

followed by most practical applications and has been followed

by all the above mentioned papers. The process has been

depicted by taking a trivial example of Student Grade Display

system for more understanding purpose. Before going into the

complete details of the threat process, a brief introduction

should be given of a data flow diagram that is going to be

used in the approach of threat process proposed by Microsoft.

 DFD: This is the diagram that is used in the requirement

analysis as well as in the design phase of the software

development life cycle. It is a pictorial representation of

the flow of data in the system, modeled from the process

aspect. It is regarded as the visualization of data

processing. The data flow diagram depicts the interactions

of the system with other systems and external objects in

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 6, June (2016)

ISSN: 2395-5317 ©EverScience Publications 39

terms of data along with the interaction of data within the

system. Being simple, it has its own short coming: it does

not have the capability to depict timing information and

parallel processing. The DFD is related to structural

programming as well as it can be linked to the object

model. (in contrast, UML is related to object-oriented

model only.) The DFD haves the representation of

processes, data base, external entity, and data flows

respectively by ellipse open ended rectangles, rectangles

and arrow marks between two entities. DFD goes into

deep of the system representation as its level increases

starting from level 0(generally DFD up to level 3 gets

appreciated otherwise becomes too complicated and

clumsy). The level 0 DFD is called context diagram which

shows the interactions between the system and external

objects/agents which respectfully act as data sources and

data sinks. There is an establishment of system boundary

inside which the whole system to be analyzed stays and

outside the boundary stays the objects not to be bothered

about. Context level Data Flow Diagram shows the overall

functionality of the application as a whole, a black-box

view. The same is divided into separate modules in level 1

DFD and each module gets further separated in detail in

level 2 DFD and so on. Hence the sub-systems are found

from level 1 DFD and the subsection detailed views and

further detailed views are found from level 2 and level 3

DFDs. System boundary is also named as trust boundary

since it is the interface that carries the level of trust of the

system. It is the area where security gets concerned,

otherwise inside a trust boundary there can be no

involvement of any external entity but only the process

and data owing through it. Figure 3 shows an example of

level-1 DFD of an e-forecasting system. There are four

external entities Admin, customer data analyst, server data

analyst and system present. Four processes are present

named as admin tasks, data input, data setup, structural

analysis and output unit. Four databases are there: user db,

temporary db, main db and report store. The data flows

among them are shown by labeled arrows. The threat

process is a step by step process and is best described by

Figure 4.

Figure 3 DFD example of an e-forecasting system.

Figure 4 Threats Step by Step process.

The stages of threat process are shown in Figure 4 and are

starting from business objective, identification of security

objectives, system overview, and decomposition of system,

identification of Threats, identifying security controls, risk

analysis and remediation and again going to system overview

stage following an iterative approach for further refinement.

The complete process is explained through a trivial example

of student grades display system [3].

4. THREAT IN LIVE WEB APPLICATIONS

Threat has been implemented on q web applications, which

are getting developed at Tata Consultancy Services, one of the

prominent IT companies in Asia. The threats of the web

application which is a scientific forecasting system, has been

presented and described in details. Microsoft's SDL tool for

Threats, which is used widely for industrial projects, has been

used to support the Threats of the following application.

4.1. Threat of scientific forecasting system

The threats of the scientific forecasting system have been

explained in de-tail. The software is live software currently

being developed at Tata Consultancy Services, Bhubaneswar.

The high level business objective of the system can be defined

as the system takes the historical business sales data from all

its registered organizations as its input, by application of

different rules and statistical analysis, it produces the fore-

casted report of future sales and demands as its output. The

context diagram of the system is shown as Figure 5.

 The system is associated with three different database:

main database, staging database and temporary database.

The biggest one out of them is the main data base which

has the capacity in hundreds of Terra bytes. The customer

sends business data and request to the system and gets his

forecasted report back from the system.

After this stage of finding out the business objective, it is time

for finding out the security objectives. This is a onetime

activity where all the security concerns of the system are

listed down and documented. In this software, the security

objectives can be brie y stated as

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 6, June (2016)

ISSN: 2395-5317 ©EverScience Publications 40

Figure 5 Context Diagram of Scientific forecasting system

 The registered SCM user only should be able to upload

and view the forecasted results. Any unauthorized user

should not be able to do the same.(satisfaction of

Confidentiality property)

 No one other than the designated SCM person (SCM

planning manager here) should be able to modify the

output by the system.(satisfaction of Integrity property)

 The system should provide uninterrupted service to the

registered users.(satisfaction of Availability property)

 Identity of the user should be established (preferably by

session parameters) before allowing access to the

system. (Satisfaction of Authentication property)

 No other SCM should be able to see the confidential

business data neither the output of other SCMs.

(satisfaction of Authorization property)There should be a

proper log maintained by the system which may be

referred to in future on any modifications of the report

done by the SCM planning manager and for all the

transaction histories. (satisfaction of Accountability

property).

Figure 6 Level 1 DFD of Scientific forecasting

These overall security properties have to be satisfied though

out the development process and the end product should be

satisfying the above mentioned six security objectives. The

overall functionality and its architecture can be shown on a

level 1 data flow diagram as Figure 4.2. This diagram satisfies

the system overview identification of Threats process. The

actors interacting to the system are the admin, customer data

analysts, customer planning manager, SCM data analyst and

the system. The registered users are called SCM. Each actor is

assigned with some tasks which interact with different

modules of the system. The admin is assigned with

administration of the users and accounts and accesses, the

data input module is handled by the customer data analyst

who inputs the historical sales master data to the system. The

data setup module preprocesses, filters, the data input by the

customer data analyst defined by the SCM data analyst. In

this module, the planning manager from the customer side

defines different rules for forecasting like business metrics,

hierarchy definition etc. In the next stage the actual statistical

analysis occurs where the system while defining the

segmentation and DFU metrics forecasts the demands [4]

Figure 7 Admin Module

Figure 8 Data Input module own above.

In this approach Data flow diagrams instead of Misuse case

diagrams to show the threats has been used in the hybrid

approach of threats. Hence the second and third phase of the

hybrid threats process, the functional and security requirement

identification phase have been modified. The modifications to

these phases result in a data flow diagram describing the

information flow and Threats to each information and entity

of the systems respectively. The motivation behind doing this

is described as follows:

4.2 Motivations behind the modification

In the existing approach, the use case diagram and misuse

case diagrams are used to do so. This diagram works well, but

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 6, June (2016)

ISSN: 2395-5317 ©EverScience Publications 41

it is not appropriate to use them as the primary way to find out

and document business process requirements. A Use Case

diagram shows a single activity, but doesn’t show an entire

process flow or any information flow. It is not good for a

business process analysis if the graphical representation of

information flow that flows into, within, and out of the

business is not shown. In the existing hybrid threats approach,

there is no report generation module for the final Threats

model. Generally in industries, for the development process

lifecycle of any application, the technical persons, whether

they are security aware persons or not, refer to reports which

describe the threats pro le and mitigation suggestions in easier

language that can be understood by all. Without this report,

it’s too hard to interpret everything unless well aware of

everything. In the existing approach, misuse case diagrams,

misuse case templates and Threats trees together have to be

gone through to interpret the Threats pro le. In contrast to the

clumsy technique, better to prepare a threats report that

describes everything, that will be easier for developers to

prepare and easier for readers to understand. The threats

representation and prioritization of threats in the existing

approach is done using attack tree. In the proposed approach,

this concept may be still relied upon, though the threats

representation through attack tree is not needed any more after

the Threats report. The threat report is itself a threat

representation. Another report generation feature can be

added to the system which shows the threat priority to the

Threats. The existing approach claims that it follows the

STRIDE methodology to derive the Threats profile in the

Misuse case diagram. However, there is no verification

technique implemented for it since it is purely unsystematic

and thought dependent with no traces of STRIDE in the

benchmark implementing it (Threat Report). It would be

better if the STRIDE specification can be shown while

defining the threats profile, which is done in the proposed

approach.

4.3 Modifying the existing tool

The implementation of the proposed approach has been done

on the framework of threats report, the security workbench

that has been developed to support the Existing hybrid

approach. The snapshots of the implementations are shown as

the following diagrams. Figure 9 shows the data flow diagram

implementation on the threats report framework and Level 1

DFD of Scientific forecasting system drawn upon it. Figure

10 shows STRIDE implementation on individual elements of

the DFD as explained earlier in the section. Figure 11 shows

the modified threats report toolbar menu indicating the extra

addition of the menu for report generation after the complete

DFD and the elements' corresponding STRIDE threats and

mitigation suggestions have been mentioned. Figure 12 shows

a demo of the report generated after the complete threats

process using the proposed approach.

Figure 9 DFD implementation in threats report Tool

Figure 10 STRIDE for different elements of DFD in threats

report

Figure 11 Report Generation Capability Introduced in

Threat report.

Figure 12 Report generated after Threat

5. CONCLUSION

Threats is applied not only applied to web applications but

also to embedded systems, cloud applications, wireless sensor

networks, network tools etc for threats evaluation and risk

analysis along with mitigation suggestions to them. Threats

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 6, June (2016)

ISSN: 2395-5317 ©EverScience Publications 42

for a application takes a lot of brainstorming sessions to

collect all information of the assets, trust boundaries and

threats profiles possible on the assets. The approach of

Microsoft is followed by most of the application developing

companies and is the most acceptable one. Along with threats

evaluation, it takes care of business aspects of software in a

stipulated time period. This is a software centric approach.

Currently software centric approach dominates over the other

two. However it is beneficial to use the combined approach.

Whenever it comes to industries, a hybrid approach with a

report generation capability is hoped to get preferred. The

threats of two industrial applications have been done and one

has been explained in greater details. The existing hybrid

approach for threats has been explained step by step. The

proposed work for some improvements in it has been

mentioned with reason and the implementation of the

proposed scheme on the hybrid approach supporting tool has

been implemented. The works have been carried out in utmost

care and any further modification is cheerfully appreciated.

REFERENCES

[1] Why dfds? when swim lanes are not enough a comparison of process
mod-eling techniques." Web Site: http://www.advstr.com.

[2] K. Talukder, V. K. Maurya, B. G. Santhosh, E. Jangam, S. V. Muni, K.
Jevitha, S. Saurabh, and A. R. Pais, \Security-aware software develop-
ment life cycle (sasdlc)-processes and tools," in Wireless and Optical
Communications Networks, 2009. WOCN'09. IFIP International
Conference on,

[3] Wikipedia, \Microsoft security development lifecycle[Online]."

http://en.wikipedia.org/wiki/Microsoft_Security_Development_Lifecycle.
[4] S. Myagmar, A. J. Lee, and W. Yurcik, \Threat modeling as a basis for

security requirements," in Symposium on requirements engineering for
infor-mation security (SREIS), 2005.

